skeletel system

Skeletal muscles move and support the skeleton. They make up fifty percent of your body weight. There are 640 individually named skeletal muscles. A skeletal muscle links two bones across its connecting joint. When these muscles contract or shorten, your bone moves. Muscles are arranged in layers over the bones. Those nearest to the skin are called superficial muscles. Those closest to the inside of the body are called deep muscles. Skeletal muscles are voluntary muscles. These are muscles that we can consciously control.
A muscle's name usually describes its shape, location or job. Some skeletal muscles are:








muscular system

The muscular system is composed of specialized cells called muscle fibers. Their predominant function is contractibility. Muscles, where attached to bones or internal organs and blood vessels, are responsible for movement. Nearly all movement in the body is the result of muscle contraction. Exceptions to this are the action of cilia, the flagellum on sperm cells, and amoeboid movement of some white blood cells.

The muscular system is the body's network of tissues that controls movement both of the body and within it. Walking, running, jumping: all these actions propelling the body through space are possible only because of the contraction (shortening) and relaxation of muscles. These major movements, however, are not the only ones directed by muscular activity. Muscles make it possible to stand, sit, speak, and blink. Even more, were it not for muscles, blood would not rush through blood vessels, air would not fill lungs, and food would not move through the digestive system. In short, muscles are the machines of the body, allowing it to work.







nervous system

The nervous system is a network of specialized cells that communicate information about an animal's surroundings and itself. It processes this information and causes reactions in other parts of the body. It is composed of neurons and other specialized cells called glia, that aid in the function of the neurons. The nervous system is divided broadly into two categories: the peripheral nervous system and the central nervous system. Neurons generate and conduct impulses between and within the two systems. The peripheral nervous system is composed of sensory neurons and the neurons that connect them to the nerve cord, spinal cord and brain, which make up the central nervous system. In response to stimuli, sensory neurons generate and propagate signals to the central nervous system which then processes and conducts signals back to the muscles and glands. The neurons of the nervous systems of animals are interconnected in complex arrangements and use electrochemical signals and neurotransmitters to transmit impulses from one neuron to the next. The interaction of the different neurons form neural circuits that regulate an organism's perception of the world and what is going on with its body, thus regulating its behavior. Nervous systems are found in many multicellular animals but differ greatly in complexity between species.





smooth muscles

Smooth muscle is a type of non-
striated muscle, found within the tunica media layer of large and small arteries and veins, the bladder, uterus, male and female reproductive tracts, gastrointestinal tract, respiratory tract, the ciliary muscle, and iris of the eye. The glomeruli of the kidneys contain a smooth muscle-like cell called the mesangial cell. Smooth muscle is fundamentally different from skeletal muscle and cardiac muscle in terms of structure, function, excitation-contraction coupling, and mechanism of contraction.
Smooth muscle fibers are spindle-shaped, and, like
striated muscle, can contract and relax. In the relaxed state, each cell is spindle-shaped, 20-500 micrometers in is ~6:1 in striated muscle and ~15:1 in smooth muscle. Smooth muscle does not contain the protein troponin; instead calmodulin (which takes on the regulatory role in smooth muscle), caldesmon and calponin are significant proteins expressed within smooth muscle.
As non-striated muscle, the actin and myosin are not arranged into distinct
sarcomeres that form orderly bands throughout the muscle cell. However, there is an organized cytoskeleton consisting of the intermediate filament proteins vimentin and desmin, along with actin filaments. Actin filaments attach to the sarcolemma by focal adhesions or in a spiral corkscrew fashion, and contractile proteins can organize into zones of actin and myosin along the axis of the cell.
The sarcolemma possess microdomains specialized to cell-signaling events and ion channels called caveolae. These invaginations in the sarcoplasma contain a host of
receptors (prostacyclin, endothelin, serotonin, muscarinic receptors, adrenergic receptors), second messenger generators (adenylate cyclase, Phospholipase C), G proteins (RhoA, G alpha), kinases (rho kinase-ROCK, Protein kinase C, Protein Kinase A), ion channels (L type Calcium channels, ATP sensitive Potassium channels, Calcium sensitive Potassium channels) in close proximity. The caveolae are often in close proximity to sarcoplasmic reticulum or mitochondria, and have been proposed to organize signaling molecules in the membrane.






cardiac muscles

Cardiac
Cardiac muscle tissue forms the bulk of the wall of the heart. Like skeletal muscle tissue, it is striated (the muscle fibers contain alternating light and dark bands (striations) that are perpendicular to the long axes of the fibers). Unlike skeletal muscle tissue, its contraction is usually not under conscious control (involuntary).

Monday, March 2, 2009

No comments:

Post a Comment